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THE UNSTEADY MODES OF RADICAL POLYMERIZATION* 

P. L. GUSIKA and V. G. ZHIZHIN 

The sets and conditions of bifurcation of three-dimensional structurally stable 

phase patterns are determined for the system of equations that define unstady proces- 

ses of radical polymerization in a perfectly stirred flcwing volume, Methods of 

qualitative analysis of differential equations /l-5/ are used. Integral character- 

istics of unsteady modes are numerically determined for the conditions of ethylene 

polymerization under high pressure. Properties of the complete system of equations 

are compared with those of the previously considered shortened system of equations 

/6/ which corresponds to the assumption of constancy of monomer concentration. 

1. The system of macrokinetic equations for the material and heat balances which define 

the radical polymerization process in a perfectly stirred flowing volume is of the form 

(1.1) 

$ = FZ (C,, Cz, 0) = h (C2,, - C,j - ClmCzne-l 0 (1.2) 

on the assumption that the initiator effectiveness remains constant and that energy absorbed 

by its decomposition can be neglected /6-g/. 

In the above equations His the universal gas constant, 't is the time, x is the heat 

transfer coefficient, F is the surface /area/ of heat exchange, cp is the medium specific heat 

at constant pressure, u is the volume flow rate of reagents at the inlet and outlet of the 

reactor, 61 and V are, respectively, the density and volume of the mixture, Q is the specific 

heat of the polymerization reaction, E is the activation energy, X0 is the reaction rate con- 

stant, T, is the initial temperature of reagents, T, is the temperature of the heat exchange 

surface, and CO is the concentration of reagents at the reactor inlet. Subscripts 1 and 2 

relate to the initiator or the initiation reaction, and to the monomer or the polymerization 

reaction, respectively, k,, = x-* (liaJ~**) 1, where subscripts * and ** correspond to the 

chain reaction growth or termination, respectively, Da is the Damkghler number which is the 

ratio of time spent in the reactor V/ uto the characteristic reaction time 1 1 /IO,, and Se is 

Semenov's number which is the ratio of the characteristic heat transfer time p lit, /(x F + p UC,) 
to the time 1 I k,,. 

The exponents m and pivary within the limits n > 1 and 0 Q m,( 1. The values m = 0.5 
and rz = 1.5 pertain to ethylene polymerization, and m = 0.5 and n = 1 to polymerization of 

styrene /7,9/. When m=n=land &I= 1, system (l.l)- (1.3) defines the reaction A + B+ D 
previously considered in /lo/. When m-0, Eqs. (1.2) and (1.3) define the dynamics of an 

n-th order reaction in a continuous-flow reactor with perfect stirring /6,11-16/. If 

variation of the monomer concentration during the reaction is ignored, the system of Eqs. (1.1) 
--(l-3) reduces to the shortened system of Eqs. (1.1) and (1.3) /6/. 

Solutions of the system of Eqs. (l.l)- (1.3) may be represented in a three-dimensional 
phase space by trajectories (C1,C,,8). The structure of their totality is determined by the 

zero surfaces F1= O,F, =: 0 and F, = 0. Surface F, = 0 passes across the straight line 

C1 := ClO,C, z= 0 and monotonically approaches the plane Cl = 0. Surface F, = 0 passesacross 
the straight lines fl -= 0, C, = 1 and C1 = 0, 0 = O,,, and monotonically approaches the plane 

Cz = 0. Surface I<', = 0 passes across the straight lines C1 = 0, H-- B,, and C, = 0, 0 = I$,, 
and at each intersection with the plane C, = const has a maximum and a minimum. 

The intersection points of surfaces F1 = O,F, : O,F, = 0 represent the equilibrium posi- 

tions of system (l.l)- (1.3). 
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2. To determine the number of equilibrium positions of system (l.l)- (1.3) we first in- 
vestigate the possible intersections of surfaces F, = 0 and F, = o, and turn to the lines of 
intersection of these surfaces and the plane C, = const. They are defined, respectively, by 
the equations 

These equations define the zero isoclines dC,ldt = 0 and dOidt= 0 of the shortened system 
of equations in the phase plane (C,,H) under the condition of constancy of concentration of 
polymer C,. The properties of the intersection are determined by their shape and, in part- 
icular, by the presence of inflection points. 

Theisocline (2.1) hasone inflectionpointwhen 0>U, since the secondderivativ~~C~'~~zalong 
that line vanishes at the single intersection point of the decreasing func,tion &(@=h,(w- 
2@/(0 + 20) and of the increasing function f$ (0) -= e-w/H, The isocline (2.2) for the most common 

value m== 0.5 has one inflection point between the extrema. 
Lines '(2.1) and (2.2) can intersect at one, three, and five points. Cases of existence 

of one and three steady states in the phase plane (C,,6) were considered in detail in /6/. 
It was also shown that five steady states are possible in the comparatively narrow range of 
parameter variation. 

The investigation of isoclines (2.1) and (2.2) shows that five steady state can occur 
in the phase plane, when the derivative dC,/iie at the inflection point of curve (2.1) is 
greater than the derivative dC1:,:& at the inflection point of curve (2.2). The phase pattern 
of the shortened system in terms of isoclines shows that in this case the three equilibrium 
positions (U,,O, U,) that lie between the extreme equilibrium positions (0,. 0,) are unstable 
(see Fig.1, where arrows indicate regions with positive derivatives). 

I 
0 B 

Fig.1 

The middle equilibrium position ishere a 
complexe singular paint common to two elliptic 
sectors /15/ located between points L;,? 0 and 
0, ljI, while points I;, and U, are of the saddle 

type. Since all intermediate equilibrium posi- 
tions are unstable, the process in the reactor 
defined by Eqs. (1.1) and (1.31, when C,= COnst, 
as well as in the case of existence of three 
equilibrium positions (see, e.g., /14/), will 
approach the equilibrium state in time that 
corresponds to one of the extreme points of 
stable equilibrium position, or will approach 
the stable limit cycle around these equilibrium 
positions. 

Thus the dynamics of a system with five 
equilibrium positions does not substantially 
differ from the dynamics of a system with three 
equilibrium positions. 

3. In the three-dimensional phase space (C,, iY5,H) the points of intersection of surfaces 
F'% = 0 and F:,- 0 form lines. The points which correspond to the equilibrium position of 
the shortened system with the lowest temperature form in Space one line, while the remaining 
points form pair-wise one or two lines (when the over-all number of equilibrium positions is 
three or five, respectively) of the parabolic type. The intersection points of these lines 
with the surface F, -- 0 are nondegenerate equilibrium positions of the system of Eqs. (l.l)- 
(1.3). 

Lines of the parabolic type do not intersect or touch the coordinate surface c, 0 (see 

Fig.2). The number of steady states of the system is, thus, odd and'does not exceedthenumber 
of steady states of the shortened system, 

As shown in /lb/, the conditions of the equilibrium position stability can be obtained 
from the characteristic equation of system (l-l)- (1.3), and the kind of singular points in 
the three-phase space may be determined by the signs of the free term and of the discriminant 
of the characteristic equation /17/ using the Sideriades classification /18/. 

The intersections of zero surfaces divide the phase space in regions where derivatives 
are of constant sign (regions of positive derivatives are indicated in Fig.2 by arrows at 
zero surfaces). Using this it is possible to represent various variants of the system phase 
pattern. As an example, one of the possible phase patterns of system (l.l)- (1.3) with three 
equilibrium positions are shown in Fig.2, and in Fig.3 the phase pattern with a single equili- 
brium position. 
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We can conclude that the extreme equilibrium positions are of the node-focus type (points 

03.0 , see /2,19/J. There are trajectories of different types (Fig.3): a and bwhich corres- 

pond to an oscillating process around the equilibrium positions; c and d which correspond to 

Fig.2 Fig.3 

oscillations around the intersection lines of surfaces F,=O and F,=O; and e and f which 
correspond to a monotonic approach to equilibrium positions inside the spirals c and d. 

The intermediate equilibrium position is unstable, it is represented by the point 02.1 

of the saddle type. 

The essential difference between the complete system of equations and the shortened one 

is the existence of oscillatory modes of approach to equilibrium positions accompanied by 
oscillations of concentration of monomer C,. 

Rapid transitions (thermal explosions) from one extreme steady state to another are 
possible in a system with several steady states at some changes of parameters. The critical 
condition of existence of such transitions in a system defined by two first order differential 
equations is that of tangency of zero isoclines inthephase plane, which corresponds to bi- 
furcation point in the parameter space. 

In a three-dimensional phase space a new condition, viz. the tangency of intersection 
lines of three zero surfaces, correspond to the bifurcation point. It is defined by the 
equation 

(3.1) 

from which it is possible to eliminate concentration C, which at the intersection point of 

zero surfaces is determined by formula 

(3.2) 

The roots of Eq. (3.1) in conformity with Eq. (3.2) define the critical temperature of the 
reacting mixture when C, = C,(e). The critical temperature corresponds to the bifurcation 

point of merging of two singular points 03.0 + 0z.1-+QJ/l,2/. 
When n=O and m=O Eqs. (3.1) and (3.2) become the Semenov's formula for critical 

temperature of mixture ignition /20/. 

The condition of tangency of intersection lines of zero surfaces (3.1) is based on the 
following theorem. 

Theorem. If at the common point of three zero surfaces F,: O,F,:= U, and F,=U the 
derivatives of any of the phase space coordinates with respect to any other coordinate of that 

space along two intersection lines of surfaces are equal, the three lines of intersection of 
surfaces at the common point of the latter are tangent to each other. 

Proof. The equations of intersection of surfaces are defined by the equalities 

fi (C,, c,, A) - Cl, F, (C,, c,, 0) L 0; i +;, 1, , 1, 2, 3 (3.3) 

By specifying these lines in parametric form C,__C,('J)(& c, >~ C,('.') (2, and o=u(~.J) (s), where 
the superscripts (i,i) indicate the intersection lines of surfaces Fi and p,, we find that 
Eqs. (3.3) are identically satisfied. Consequently the equalities 
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(3.4) 

are valid. 

Solving the system of Eqs. (3.4) for (riC, I dBi(iJJ.(rlC, , dU)“x’) and taking into account the 
partial derivatives at the equilibrium positions, we obtain 

Let us consider the equalities 

at the point of intersection of the three zero surfaces. Taking into account that by virtue 
of equations F, 10, F,- 0, and F,= 0 the equalities 

are satisfied at that point, it is possible to show that all Eqs. (3.5) reduce (without loss 
of roots) to one and the same Eq. (3.1). This shows that when one of equalities (3.5) is sat- 
isfied, all of the remaining three equalities are satisfied. 

This proves the theorem, since when along the three lines at their common point all de- 
rivatives of space coordinates with respect every other coordinate are equal, these lines are 

tangent to each other (osculation of first order lines). 

4. Numerical investigations of the system of Eqs. (l.l)- (1.3) were carried out for the 
ethylene polymerization process (in- 0.5, n x 1.5) with the characteristic parameters selected 

close to value used in projected and actual experimental and industrial polymerization react- 

ors of the autoclave type. The qualitative analysis has shown the existence of one or two 

stable steady states approached by the reactor process,hence 

1.a the parameters and stability of such states were, first of 

all, determined. The use of the graphic method for determin- 

ing the solutions in the cp. 0 plane, where cp = 1 - c, / LIL" 
is the depth of polymer transformation, proved to be exped- 

ient for the determination of parameters and numberof steady 

states. 
n.5 It should be pointed out that conditions of existence 

of five steady states of the ethylene polymerization reaction 

are not realized in practice. 

By plotting the lines <{I_~ (0) (solid lines in Fig.4: 
1 -Qz -= lo','- Q, =m IO' , and 3 ~-P, ~~ lW), and equating to zero 

0 
the derivatives, from Eqs. (1.1) and (1.21, and or: (0) (the 

0.1 0.2 dash lines in Fig.4: I-Q:3 = 7.4 and L' - R, : 40, and from Eqs. 
(1.4) and (1.3) it is possible to determine the parameters at 

Fig.4 points of intersection of lines that correspond to steady 

states of system (l.l)- (1.3). 
The lines of 'pr(W and <cl(U) in Fig.4 show the possibility of existence of one of three 

intersections, i.e. the system has one to three steady states. 
Numerical determination of the type of steady points in conformity with the Sideriades's 

classification, showed that the extreme with respect to temperature points in the case of 
three intersections and the single point in that of a single intersection are stable and of 

the 0 '(' type. This is in agreement with the qualitative determination of thetypeofsingular 
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points of steady states. 

Fig.5 

The following conclusions can be drawn from the analysis of line intersections that cor- 
respond to steady states of system (l-l)-- (1.3) in the cp,O plane. 

1) The variation in a wide range of the determining parameters 

does not substantially affect the depth of transformation of V and the temperature 0 of the 
low-temperature steady state; 

2) a greater depth of transformation for the high-temperature steady state, which is 
recommended in practice, can be obtained at high values of $2, and Q, (Q2, > 103,S& > 10). 

The unsteady process modes in a polymerization reactor were determined by the method of 
numerical integration of system (l.l)- (1.3) on a computer using the Runge-Kutta method. 
As a whole, these calculations had confirmed the results of the qualitative analysis. The 

approach of the reactor process to the steady mode is accompanied by parameter oscillations. 
Whenthehigh-temperature steady state is approached,a sharp,explosion-like,increaseoftemperat- 
ure 8 and of transformation depth of qooccurs, after which 0 and cp slowly decrease to their 
steady values. It should be pointed out that the calculations were based on the assumption 
of constancy of parameters at the reactor intake and their independence of parameter variation 
in the reaction volume. 

As an example, the dependence of cp,% and q on the dimensionless time i0 = 0,= rulY for 
a = 5 .i06 h, y = 3 .105 h. or. = 2h (6 = 1), w = 0.8 , and fi = (C1,C,,)'/z = 106 h, is shown in Fig.!?. In this 
case Q,= 1430, R, = 6.6i and when 0, = 0.06 there is a single steady state in which 'p = 0.9875, % = 

0.2081 and q = 0.0074. The trajectories of d and a in Fig.3 correspond, respectively, to Figs. 
5,a and b. 

The authors thank V. B. Vol'ter for discussing this work. 
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